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We study the modulational instability of the zone boundary mode in nonlinear lattices with generic polyno-
mial potentials. We present an exact expression of the instability growth rate in the high energy limit. The
unstable wave number range and the most unstable wave number are obtained. Relevance of the present results
on an energy localization state, which appears after growth of the modulational instability, is also discussed.
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I. INTRODUCTION

Fermi, Pasta, and Ulam(FPU) were the first to study the
relaxation to equilibrium of one-dimensional nonlinear lat-
tices [1]. They numerically integrated the equations of mo-
tion with an initial condition far from equilibrium, giving all
energy to the lowest wave number normal mode. It is well
known that they observed the recurrence phenomenon in-
stead of the relaxation to the equilibrium state. For historical
reasons, the relaxation toward equilibrium has been usually
studied with an initial condition where a small number of
low wave number modes were excited. Recently, several
works have been devoted to the relaxation from an initial
excitation of thezone boundary mode(ZBM), which is the
highest wave number mode[2–4]. These investigations dem-
onstrated that localized modes calleddiscrete breathers or
intrinsic localized modes, which were discovered by Takeno
et al. [5], emerge and play an important role in the relaxation
process. In addition, it was shown in Ref.[6] that the discrete
breathers emerge also from an initial excitation of a high
wave number mode other than the ZBM.

The modulational instability is the fundamental mecha-
nism for spontaneous generation of the discrete breathers out
of a small initial perturbation on the initially excited mode. It
is important to clarify the nature of the modulational insta-
bility for better understanding of the discrete breather gen-
eration and the relaxation process in nonlinear lattices. The
modulational instability is studied for the FPU lattice
[4,7–14] and the nonlinear Klein-Gordon lattice[15,16]. The
modulational instability of an arbitrary wave number mode is
studied in Refs.[12,15,16] while that of the ZBM is studied
in the other references. In Ref.[14], stability of some other
low-dimensional invariant subsets of modes is also studied
for the FPU lattice besides that of the ZBM. However, these
works are numerical or approximate analytical analyses and
no rigorous result on the modulational instability has yet
been obtained. In the present paper, we study the modula-
tional instability in nonlinear lattices with generic polyno-
mial potentials and present exact results on the instability
growth rate in the high energy limit.

The present paper is organized as follows. In Sec. II, we
describe a correspondence between the variational equation
of a homogeneous potential system and the Gauss hypergeo-

metric equation and then review some known results on a
monodromy matrix of the Gauss hypergeometric equation. In
Sec. III, we describe the nonlinear lattice model, the normal
mode coordinates, and the ZBM solution. In Sec. IV, we
calculate the instability growth rate in the high energy limit.
Moreover, we discuss relevance of the present results on the
energy localization state consisting of the discrete breathers,
which appears after growth of the modulational instability.
Conclusions are offered in Sec. V.

II. GAUSS HYPERGEOMETRIC EQUATION AND
MONODROMY MATRIX

Consider the linear differential equation

d2y

dt2
+ gstdy = 0, s1d

where gstd is a periodic function with the periodT. Let
hy1,y2j be a system of fundamental solutions of Eq.(1). Ac-
cording to the Floquet theory, solutions of Eq.(1) at t= t and
t+T are related via a 232 monodromy matrixM as

„y1st + Td,y2st + Td… = „y1std,y2std… ·M . s2d

The eigenvalues ofM are called thecharacteristic multipli-
ers and given in the formhr ,r−1j because ofM PSLs2,Cd.
The characteristic exponentsare defined bys= ±T−1lnuru.
Equation(1) has unstable solutions if there is a positives.

The monodromy matrixM can be analytically calculated
in some particular cases although the calculation is impos-
sible in general. One of such cases is the case of a homoge-
neous potential system. We review some known results on
the monodromy matrix for the homogeneous potential sys-
tem [17,18]. Consider the set of equations

d2w

dt2
+ a2mw2m−1 = 0 s3d

and

d2j

dt2
+ b2mwstd2m−2j = 0, s4d

wherem is a positive integer,a2m andb2m are real constants,
and we assumea2m.0. We define a parameterl2m as

l2m =
b2m

a2m
, s5d
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which we call thestability parameter. Equation(3) has the
integral

1

2
Sdw

dt
D2

+
a2m

2m
w2m = h, s6d

wherehPR is a constant corresponding the energy. The left
hand side of Eq.(6) can be regarded as the Hamiltonian of a
nonlinear oscillator with the homogeneous potential of the
order 2m. From Eq.(6), a periodic solutionwstd of Eq. (3) is
determined as the inverse function of the integral

t =E
w0

w

dw/ÎPswd, s7d

with

Pswd = 2Fh − Sa2m

2m
Dw2mG , s8d

wherew0 is a constant corresponding to the initial condition,
i.e., ws0d=w0. If we consider integral(7) in the complex
domain, then there exist branch pointsŝk of the Riemann
surface defined byz=ÎPswd, which are located at

ŝk = S2mh

a2m
D1/2m

expFi
pk

m
G, k = 0,1, . . . ,2m− 1. s9d

Two points ŝ0=s2mh/a2md1/2m and ŝm=−s2mh/a2md1/2m are
on the real axis. Letg be a counterclockwise circuit encir-
cling these two branch pointsŝ0 and ŝm in the complexw
plane. The real period of solutionwstd is given by the inte-
gral

Thom=R
g

dw/Îpswd. s10d

The monodromy matrixM for the real period is determined
from analytical continuation of a system of fundamental so-
lutions of Eq.(4) alongg.

It is shown in Ref.[17] that Eq.(4) is transformed into the
Gauss hypergeometric equation by the change of the inde-
pendent variable fromt to z=hwstdj2m. This fact enables us to
obtain an explicit expression for the monodromy matrixM of
Eq. (4) corresponding to the real period. If we make this
change of variable in Eq.(4) then we have

zs1 − zd
d2j

dz2 + fc − sa + b + 1dzg
dj

dz
− abj = 0, s11d

where

a + b =
1

2
−

1

2m
, ab= −

l2m

4m
, c = 1 −

1

2m
. s12d

Equation(11) has two singular points atz=0 and 1 in the
finite z plane. Letg0 and g1 be counterclockwise circuits
encirclingz=0 andz=1 with a common base pointz0 on the
real axiss0,z0,1d, respectively. Explicit expressions of the
monodromy matrices of Eq.(11) corresponding tog0 andg1,
which we denote byMsg0d and Msg1d, respectively, are
known (e.g., Ref.[19]). The pathg in thew plane is mapped
into g1g0

mg1g0
m in the z plane by the mappingz=w2m, where

g1g0
mg1g0

m stands for the circuit consisting ofg1, g0
m, g1, and

g0
m in this order. Therefore the monodromy matrixM can be

obtained by the productMsg1dMsg0dmMsg1dMsg0dm for a
certain system of fundamental solutions. After some calcula-
tion, we can obtain the explicit expression ofM as follows
(for details, see Ref.[17]):

M = S− 1 − BC

A ABC− 1
D2

, s13d

where

A = 1 −e−ips2a+1/md, B = 1 −e−ips2b+1/md,
s14d

C = 2/s1 − e−ip/md.

A simple computation shows that

trM = 2F2msl2md, s15d

where

F2msl2md =
2

sin2sp/2md
cos2F p

2m
Îsm− 1d2 + 4ml2mG − 1.

s16d

The eigenvalueshrhom,rhom
−1 j of M can be obtained from the

equationr2−str Mdr+1=0. Solving this equation and using
the definitionshom= ±Thom

−1 lnurhomu, we can obtain the char-
acteristic exponents as follows:

shom= ±
1

Thom
lnuF2msl2md + ÎhF2msl2mdj2 − 1u. s17d

This shows that there is a positive characteristic exponent if
and only if F2msl2md.1strM .2d. It can be easily shown
thatF2msl2md.1 holds whenl2m is in the regionS2m defined
by

S2m = hl P Rul , 0,1, l , 2m− 1,2m+ 2 , l , 6m

− 2, . . . ,js j − 1dm+ j , l , js j + 1dm− j , . . . j.

s18d

III. NONLINEAR LATTICE AND ZBM

Our investigation is of the nonlinear lattice model de-
scribed by the Hamiltonian

H =
1

2o
i=1

N

pi
2 + o

i=1

N

fUsqid + Vsqi − qi−1dg s19d

with the periodic boundary condition, i.e.,q0=qN. The on-
site potentialU and the nearest neighbor interaction potential
V are of the forms
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UsXd = o
r=1

m
m2r

2r
X2r, VsXd = o

r=1

m
k2r

2r
X2r , s20d

wherem2r PR andk2r PR are the constants. We assume that
m2mù0 andk2m.0. The equations of motion derived from
the Hamiltonian(19) are

d2qi

dt2
+ o

r=1

m

fm2rqi
2r−1 + k2rhsqi − qi−1d2r−1 + sqi − qi+1d2r−1jg = 0,

s21d

wherei =1,2, . . . ,N.
The transformationq=sq1, . . . ,qNd°Q=sQ0, . . . ,QN−1d

defined by

qi =
1

ÎN
o
k=0

N−1

QkFsinS2pk

N
iD + cosS2pk

N
iDG, i = 1,2, . . . ,N,

s22d

gives the normal modes of the corresponding linear system.
Here,Qk is the amplitude ofkth normal mode. The conjugate

momentumPk is defined byPk=Q̇k. The ZBM is the normal
mode ofk=N/2, which corresponds to the displacement pat-
ternqi =s−1diQN/2/ÎN. It is easy to check that Eq.(21) has a
particular solution of the formqistd=s−1diwstd. Thus the
ZBM of the corresponding linear system still gives an exact
periodic solution for the nonlinear lattice(19). By the sub-
stitution qistd=s−1diwstd in Eq. (22), we have the equation
for wstd as

d2w

dt2
+ o

r=1

m

sm2r + 22rk2rdw2r−1 = 0, s23d

with the integral

1

2
Sdw

dt
D2

+ o
r=1

m
1

2r
sm2r + 22rk2rdw2r = h, s24d

wherehPR is the energy density defined byh=E/N, where
E is the total energy of the lattice. Using this integral, the
solutionwstd is obtained in the form(7) with

Pswd = 2Fh − o
r=1

m
1

2r
sm2r + 22rk2rdw2rG . s25d

Let skshd ,k=0,1, . . . ,2m−1 be solutions of the algebraic
equationPswd=0. They are the branch points of the Riemann
surface defined byz=ÎPswd. Sincem2m+22mk2m.0, there
exist two real branch pointss0shd andsmshd for h.h0, where
h0 is a sufficiently large positive constant. We define a coun-
terclockwise circuit G encircling these two real branch
points. The real periodTshd of wstd is given by

Tshd =R
G

dw/ÎPswd. s26d

We note that the periodTshd depends onh.

IV. STABILITY ANALYSIS OF ZBM

Let us consider the variational equations along the ZBM
solution. Linearizing Eq.(21), we can obtain the variational
equations in the vector form

d2j

dt2
+ FHo

r=1

m

s2r − 1dm2rwstd2r−2J · I

+Ho
r=1

m

s2r − 1dk2r„2wstd…2r−2J ·AG · j = 0, s27d

wherej=sj1, . . . ,jNd and eachji , i =1, . . . ,N represents the
variation inqi. In Eq. (27), I is theN3N identity matrix and
A is theN3N matrix defined by

A =1
2 − 1 − 1

− 1 2 − 1

� � �

− 1 2 − 1

− 1 − 1 2
2 , s28d

where the vanishing components are zero. To obtain the de-
coupled form of the variational equations, we introduce new
variableshk defined by

ji =
1

ÎN
o
k=0

N−1

hkFsinS2pk

N
iD + cosS2pk

N
iDG, i = 1,2, . . . ,N.

s29d

The variablehk is the variation in thekth normal mode co-
ordinateQk. If we change variables fromji to hk, Eq. (27) is
rewritten in the form

d2hk

dt2
+ Fo

r=1

m

s2r − 1dsm2r + 22r−2vk
2k2rdwstd2r−2Ghk = 0,

s30d
k = 0,1, . . . ,N − 1,

where vk
2,k=0,1, . . . ,N−1 are the eigenvalues ofA and

given by

vk
2 = 4 sin2Spk

N
D . s31d

The monodromy matrix of Eq.(30) for the real period is
determined from analytical continuation of a system of fun-
damental solutions of Eq.(30) alongG.

We consider Eq.(30) with Eq. (23) in the limit h→`. As
pointed out in Ref.[18], in this limit, the highest order terms
become dominant in Eqs.(23) and (30). Thus the mono-
dromy matrix for the real period of Eq.(30) converges to that
of the equation
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d2hk

dt2
+ s2m− 1dsm2m + 22m−2vk

2k2mdwstd2m−2hk = 0,

s32d

with

d2w

dt2
+ sm2m + 22mk2mdw2m−1 = 0, s33d

for which we can calculate an explicit expression of the
monodromy matrix. This fact can be confirmed by making
the change of scalew→h1/2mw ,t→hs1−md/2mt, in Eqs. (23)
and(30). From Eqs.(32) and(33), the stability parameter for
the kth variational equation reads

l2mskd = s2m− 1d
u2m + sin2spk/Nd

u2m + 1
, s34d

where

u2m =
m2m

22mk2m
. s35d

Let hrhom,rhom
−1 j be the characteristic multipliers of the mono-

dromy matrix of Eq. (32), where we assumeurhomuù1
ù urhom

−1 u. We can obtainrhom as

rhom= F2m„l2mskd… + ÎhF2m„l2mskd…j2 − 1, s36d

whereF2m is the function defined by Eq.(16). It should be
noted thatrhom depends onk but not onh.

Let denote one of the characteristic multipliers of Eq.(30)
by rshd and assumeurshduù1. The characteristic multiplier
rshd converges torhom in the limit h→`: i.e., rshd is of the
form rshd=rhom+«shd, where «shd is a function such that
«shd→0 for h→`. The exponential growth ratessk,hd of
the solutionhk of Eq. (30) is a function ofk andh and given
by ssk,hd=Tshd−1lnurshdu. Thus we can obtainssk,hd as fol-
lows:

ssk,hd =
1

Tshd
lnuF2m„l2mskd… + ÎhF2m„l2mskd…j2 − 1 +«shdu,

s37d

whereTshd is the period given by Eq.(26). Equation(37)
indicates that theh dependence ofssk,hd is essentially de-
termined by that ofTshd for largeh. If we make the change
of variablew=h1/2mw8 in Eq. (26), then we have

Tshd . h−s1/2−1/2mdR
G8

dw8/Î2h1 − fsm2m + 22mk2md/2mgw82mj

s38d

for largeh, whereG8 is a counterclockwise circuit encircling
the two real branch pointsw8= ± h2m/ sm2m+22mk2mdj1/2m.
Since the integral in Eq.(38) is independent ofh, we can find
the scaling law ofTshd,h−s1/2−1/2md for large h. Therefore
the scaling law for the exponential growth ratessk,hd is

ssk,hd , h1/2−1/2m s39d

in the high energy density region. This scaling law is also
found in Refs.[10,11] based on an approximate analysis.

Let us consider thek dependence of the exponential
growth rate in the limith→`. Since there exists the maximal
value maxkssk,hd of ssk,hd for fixed h, we can define a
normalized exponential growth rate by

s̃skd = lim
h→`

ssk,hd
maxkssk,hd

= C0lnuF2m„l2mskd… + ÎhF2m„l2mskd…j2 − 1u,
s40d

where we regardk as a continuous parameter in the range
kP f0,N−1g and C0 is a constant such that the maximal
value of s̃skd may be unity. Thek dependence of the expo-
nential growth rate given by Eq.(40) is exact in the limith
→`.

We proceed to determine a range ofk for unstable pertur-
bations. Equation(40) indicates thats̃skd.0 if and only if
F2m(l2mskd).1. As mentioned in Sec. II,F2m(l2mskd).1 is
equivalent to the condition thatl2mskd is in the regionS2m

defined by Eq. (18). It follows from Eq. (34) that 0
øl2mskdø2m−1 whenu2mù0. Therefore, we have the con-
dition 1,l2mskd,2m−1 for the unstable perturbations. Us-
ing this condition and Eq.(34), we can determine a critical
wave numberkc such that perturbations forkc,k,N−kc
skÞN/2d are unstable as follows:

kc =
N

p
arcsinFÎ 1

2m− 1
−

2sm− 1d
2m− 1

u2mG . s41d

If the term inside the root sign is negative, i.e.,
u2m.1/2sm−1d, then perturbations of any wave number are
unstable. Equation(41) shows thatkc decreases with increas-
ing u2m. That is, the unstable wave number range extends as
the contribution of the on-site potentialU relative toV be-
comes large. Whenu2m exceeds the threshold value 1/2sm
−1d, all wave numbers are in the unstable range. Let us con-
sider the case ofu2m=0, i.e.,m2m=0. For this case, we have
kc=sN/pdarcsinf1/Î2m−1g. This indicates that the unstable
wave number range extends andkc approaches zero as the
order of the potential increases. In a particular case ofm=2,
which corresponds to the FPU-b lattice, we have kc
=sN/pdarcsinf1/Î3g.0.196N and this result coincides with
an estimation obtained in Refs.[9,11].

Using Eq. (40) we determine the most unstable wave
number kmaxP f0,N/2d, which has the largest exponential
growth rate. Equation(40) indicates thats̃skd is a monoto-
nous increasing function ofF2m whenF2m.1. It follows that
s2m−1d / s1+u2m

−1døl2mskdø2m−1 from Eq. (34). There-
fore, we can obtainkmax by determining the valuel* of l
that maximizesF2msld in the range maxh1,s2m−1d / s1
+u2m

−1djølø2m−1 and then solving the equationl2mskd
=l* with respect tok. Thekmax is obtained as follows:
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kmax=5
N

p
arcsinFÎ3m2 + 2m− 1

4ms2m− 1d
−

5m2 − 6m+ 1

4ms2m− 1d
u2mG

if u2m ,
3m2 + 2m− 1

5m2 − 6m+ 1
,

0

if u2m ù
3m2 + 2m− 1

5m2 − 6m+ 1
.

s42d

Equation(42) shows thatkmax decreases asu2m increases, in
other words, as the contribution ofU relative toV increases.
In addition, Eq.(42) shows that thek=0 mode, the transla-
tional mode, becomes most unstable whenu2m is not less
than the threshold values3m2+2m−1d / s5m2−6m+1d. For
the caseu2m=0, we have

kmax= sN/pdarcsinfÎs3m2 + 2m− 1d/4ms2m− 1dg.

Thus the most unstable wave numberkmax converges to
sN/pdarcsinfÎ3/8g.0.210N in the limit m→`. If we con-
sider the casem=2, we have kmax=sN/pdarcsinfÎ5/8g
.0.290N. A close estimationkmax=sN/pdarcsinfÎ8/Î3−4g
.0.288N has been obtained in Refs.[10,11].

Some examples ofs̃ plotted againstk/N are shown in
Fig. 1. These examples are plotted only for 0øk/Nø1/2
since the functions̃ is symmetric with respect tok/N=1/2.
The above results onkc andkmax can be verified in the figure.

Let us briefly discuss the relevance of our results on the
spontaneous energy localization process. It has been already
shown that the modulational instability is the fundamental
mechanism for spontaneous generation of the discrete
breathers out of a small initial perturbation on the ZBM
[3,4,8,16]. As pointed out in Ref.[4], more strongly localized
breathers appear for smallerkmax becauseN/2−kmax can be
regarded as an average wave number of amplitude modula-
tion of the ZBM. Therefore, according to the above results, it
is expected that in the high energy region more strongly lo-
calized breathers emerge for largeru2m if the order of poten-
tial is fixed. In addition, it is expected that more strongly
localized breathers emerge for largerm case in the high en-
ergy region, provided thatu2m=0. These predictions are con-
firmed by numerical experiments. We note that in general the
localization features, which are expected from our stability
analysis considering only the highest order terms in the po-
tential, hold only in the high energy region. When the energy
is not sufficiently large, the effect of lower order terms in the
potential might appear and significantly modify the above
expected localization features. For instance, it is shown in
Ref. [8] that a cubic power correction to the quartic FPU
potential weakens localization.

V. CONCLUSIONS

We studied the modulational instability of the ZBM in
nonlinear lattices with polynomial on-site and interaction po-
tentials. We obtained an exact expression for the normalized
instability growth rates̃skd in the high energy limit. The
critical wave numberkc for unstable perturbations and the
most unstable wave numberkmax were determined. In addi-
tion, the energy scaling law of the instability growth rate, Eq.
(39), was derived. Relevance of the present results on the
energy localization state induced by the modulational insta-
bility was also discussed.

In the present paper, for simplicity, we assumed that both
of the on-site potentialU and the interaction potentialV in-
clude only even order terms. Finally, we remark that the
present results hold also for an interaction potentialV includ-
ing odd order terms, provided that the highest order term of
V is of an even order.
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